Germany
CAT: Coordinating Anatomical-Textual Prompts for Multi-Organ and Tumor Segmentation
Existing promptable segmentation methods in the medical imaging field primarily consider either textual or visual prompts to segment relevant objects, yet they often fall short when addressing anomalies in medical images, like tumors, which may vary greatly in shape, size, and appearance. Recognizing the complexity of medical scenarios and the limitations of textual or visual prompts, we propose a novel dualprompt schema that leverages the complementary strengths of visual and textual prompts for segmenting various organs and tumors. Specifically, we introduce CAT, an innovative model that Coordinates Anatomical prompts derived from 3D cropped images with Textual prompts enriched by medical domain knowledge. The model architecture adopts a general query-based design, where prompt queries facilitate segmentation queries for mask prediction. To synergize two types of prompts within a unified framework, we implement a ShareRefiner, which refines both segmentation and prompt queries while disentangling the two types of prompts. Trained on a consortium of 10 public CT datasets, CAT demonstrates superior performance in multiple segmentation tasks. Further validation on a specialized inhouse dataset reveals the remarkable capacity of segmenting tumors across multiple cancer stages. This approach confirms that coordinating multimodal prompts is a promising avenue for addressing complex scenarios in the medical domain. Codes are available at https://github.com/zongzi3zz/CAT.
Overcoming Common Flaws in the Evaluation of Selective Classification Systems Till J. Bungert 1,2,6 Carsten T. Lüth 1,2 Michael Baumgartner 2,3,6
Selective Classification, wherein models can reject low-confidence predictions, promises reliable translation of machine-learning based classification systems to real-world scenarios such as clinical diagnostics. While current evaluation of these systems typically assumes fixed working points based on pre-defined rejection thresholds, methodological progress requires benchmarking the general performance of systems akin to the AUROC in standard classification. In this work, we define 5 requirements for multi-threshold metrics in selective classification regarding task alignment, interpretability, and flexibility, and show how current approaches fail to meet them. We propose the Area under the Generalized Risk Coverage curve (AUGRC), which meets all requirements and can be directly interpreted as the average risk of undetected failures. We empirically demonstrate the relevance of AUGRC on a comprehensive benchmark spanning 6 data sets and 13 confidence scoring functions. We find that the proposed metric substantially changes metric rankings on 5 out of the 6 data sets.
Provably Safe Neural Network Controllers via Differential Dynamic Logic Samuel Teuber 1 Stefan Mitsch 2 Karlsruhe Institute of Technology 2
While neural networks (NNs) have a large potential as autonomous controllers for Cyber-Physical Systems, verifying the safety of neural network based control systems (NNCSs) poses significant challenges for the practical use of NNs--especially when safety is needed for unbounded time horizons. One reason for this is the intractability of analyzing NNs, ODEs and hybrid systems. To this end, we introduce VerSAILLE (Verifiably Safe AI via Logically Linked Envelopes): The first general approach that allows reusing control theory literature for NNCS verification. By joining forces, we can exploit the efficiency of NN verification tools while retaining the rigor of differential dynamic logic (dL). Based on a provably safe control envelope in dL, we derive a specification for the NN which is proven with NN verification tools. We show that a proof of the NN's adherence to the specification is then mirrored by a dL proof on the infinite-time safety of the NNCS. The NN verification properties resulting from hybrid systems typically contain nonlinear arithmetic over formulas with arbitrary logical structure while efficient NN verification tools merely support linear constraints. To overcome this divide, we present Mosaic: An efficient, sound and complete verification approach for polynomial real arithmetic properties on piece-wise linear NNs.
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein, Maksym Andriushchenko
Recent work has shown that state-of-the-art classifiers are quite brittle, in the sense that a small adversarial change of an originally with high confidence correctly classified input leads to a wrong classification again with high confidence. This raises concerns that such classifiers are vulnerable to attacks and calls into question their usage in safety-critical systems. We show in this paper for the first time formal guarantees on the robustness of a classifier by giving instance-specific lower bounds on the norm of the input manipulation required to change the classifier decision. Based on this analysis we propose the Cross-Lipschitz regularization functional. We show that using this form of regularization in kernel methods resp.
Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning
Shixiang (Shane) Gu, Timothy Lillicrap, Richard E. Turner, Zoubin Ghahramani, Bernhard Schölkopf, Sergey Levine
Off-policy model-free deep reinforcement learning methods using previously collected data can improve sample efficiency over on-policy policy gradient techniques. On the other hand, on-policy algorithms are often more stable and easier to use. This paper examines, both theoretically and empirically, approaches to merging on-and off-policy updates for deep reinforcement learning. Theoretical results show that off-policy updates with a value function estimator can be interpolated with on-policy policy gradient updates whilst still satisfying performance bounds. Our analysis uses control variate methods to produce a family of policy gradient algorithms, with several recently proposed algorithms being special cases of this family. We then provide an empirical comparison of these techniques with the remaining algorithmic details fixed, and show how different mixing of off-policy gradient estimates with on-policy samples contribute to improvements in empirical performance. The final algorithm provides a generalization and unification of existing deep policy gradient techniques, has theoretical guarantees on the bias introduced by off-policy updates, and improves on the state-of-the-art model-free deep RL methods on a number of OpenAI Gym continuous control benchmarks.
Fast amortized inference of neural activity from calcium imaging data with variational autoencoders
Artur Speiser, Jinyao Yan, Evan W. Archer, Lars Buesing, Srinivas C. Turaga, Jakob H. Macke
Calcium imaging permits optical measurement of neural activity. Since intracellular calcium concentration is an indirect measurement of neural activity, computational tools are necessary to infer the true underlying spiking activity from fluorescence measurements. Bayesian model inversion can be used to solve this problem, but typically requires either computationally expensive MCMC sampling, or faster but approximate maximum-a-posteriori optimization. Here, we introduce a flexible algorithmic framework for fast, efficient and accurate extraction of neural spikes from imaging data. Using the framework of variational autoencoders, we propose to amortize inference by training a deep neural network to perform model inversion efficiently.
The Numerics of GANs
In this paper, we analyze the numerics of common algorithms for training Generative Adversarial Networks (GANs). Using the formalism of smooth two-player games we analyze the associated gradient vector field of GAN training objectives. Our findings suggest that the convergence of current algorithms suffers due to two factors: i) presence of eigenvalues of the Jacobian of the gradient vector field with zero real-part, and ii) eigenvalues with big imaginary part. Using these findings, we design a new algorithm that overcomes some of these limitations and has better convergence properties. Experimentally, we demonstrate its superiority on training common GAN architectures and show convergence on GAN architectures that are known to be notoriously hard to train.