Neural Net and Traditional Classifiers

Huang, William Y., Lippmann, Richard P.

Neural Information Processing Systems 

Previous work on nets with continuous-valued inputs led to generative procedures to construct convex decision regions with two-layer perceptrons (one hidden layer) and arbitrary decision regions with three-layer perceptrons (two hidden layers). Here we demonstrate that two-layer perceptron classifiers trained with back propagation can form both convex and disjoint decision regions. Such classifiers are robust, train rapidly, and provide good performance with simple decision regions. When complex decision regions are required, however, convergence time can be excessively long and performance is often no better than that of k-nearest neighbor classifiers. Three neural net classifiers are presented that provide more rapid training under such situations.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found