Streaming k-means approximation

Ailon, Nir, Jaiswal, Ragesh, Monteleoni, Claire

Neural Information Processing Systems 

We provide a clustering algorithm that approximately optimizes the k-means objective, in the one-pass streaming setting. We make no assumptions about the data, and our algorithm is very light-weight in terms of memory, and computation. This setting is applicable to unsupervised learning on massive data sets, or resource-constrained devices. The two main ingredients of our theoretical work are: a derivation of an extremely simple pseudo-approximation batch algorithm for k-means, in which the algorithm is allowed to output more than k centers (based on the recent k-means++"), and a streaming clustering algorithm in which batch clustering algorithms are performed on small inputs (fitting in memory) and combined in a hierarchical manner. Empirical evaluations on real and simulated data reveal the practical utility of our method."

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found