Exploratory Feature Extraction in Speech Signals

Intrator, Nathan

Neural Information Processing Systems 

A novel unsupervised neural network for dimensionality reduction which seeks directions emphasizing multimodality is presented, and its connection toexploratory projection pursuit methods is discussed. This leads to a new statistical insight to the synaptic modification equations governing learning in Bienenstock, Cooper, and Munro (BCM) neurons (1982). The importance of a dimensionality reduction principle based solely on distinguishing features, is demonstrated using a linguistically motivated phoneme recognition experiment, and compared with feature extraction using back-propagation network. 1 Introduction Due to the curse of dimensionality (Bellman, 1961) it is desirable to extract features froma high dimensional data space before attempting a classification. How to perform this feature extraction/dimensionality reduction is not that clear. A first simplification is to consider only features defined by linear (or semi-linear) projections ofhigh dimensional data.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found