Statistical Prediction with Kanerva's Sparse Distributed Memory

Rogers, David

Neural Information Processing Systems 

David Rogers Research Institute for Advanced Computer Science MS 230-5, NASA Ames Research Center Moffett Field, CA 94035 ABSTRACT A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near-or over-capacity, where the associative-memory behavior of the model breaksdown, the processing performed by the model can be interpreted asthat of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint ofsparse distributed memory and for which the standard formulation ofSDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with'Genetic Algorithms', and a method for improving the capacity of SDM even when used as an associative memory. OVERVIEW This work is the result of studies involving two seemingly separate topics that proved to share a common framework.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found