An Auditory Localization and Coordinate Transform Chip

Horiuchi, Timothy K.

Neural Information Processing Systems 

The localization and orientation to various novel or interesting events in the environment is a critical sensorimotor ability in all animals, predator or prey. In mammals, the superior colliculus (SC) plays a major role in this behavior, the deeper layers exhibiting topographicallymapped responses to visual, auditory, and somatosensory stimuli. Sensory information arriving from different modalitiesshould then be represented in the same coordinate frame. Auditory cues, in particular, are thought to be computed in head-based coordinates which must then be transformed to retinal coordinates.In this paper, an analog VLSI implementation for auditory localization in the azimuthal plane is described which extends thearchitecture proposed for the barn owl to a primate eye movement system where further transformation is required. This transformation is intended to model the projection in primates from auditory cortical areas to the deeper layers of the primate superior colliculus. This system is interfaced with an analog VLSI-based saccadic eye movement system also being constructed in our laboratory.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found