Markov Random Fields Can Bridge Levels of Abstraction

Cooper, Paul R., Prokopowicz, Peter N.

Neural Information Processing Systems 

Network vision systems must make inferences from evidential information acrosslevels of representational abstraction, from low level invariants, through intermediate scene segments, to high level behaviorally relevant object descriptions. This paper shows that such networks can be realized as Markov Random Fields (MRFs). We show first how to construct an MRF functionally equivalent to a Hough transform parameter network, thus establishing a principled probabilistic basis for visual networks. Second, weshow that these MRF parameter networks are more capable and flexible than traditional methods. In particular, they have a well-defined probabilistic interpretation, intrinsically incorporate feedback, and offer richer representations and decision capabilities.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found