A Practical Monte Carlo Implementation of Bayesian Learning

Rasmussen, Carl Edward

Neural Information Processing Systems 

A practical method for Bayesian training of feed-forward neural networks using sophisticated Monte Carlo methods is presented and evaluated. In reasonably small amounts of computer time this approach outperforms other state-of-the-art methods on 5 datalimited tasksfrom real world domains. 1 INTRODUCTION Bayesian learning uses a prior on model parameters, combines this with information from a training set, and then integrates over the resulting posterior to make predictions. Withthis approach, we can use large networks without fear of overfitting, allowing us to capture more structure in the data, thus improving prediction accuracy andeliminating the tedious search (often performed using cross validation) for the model complexity that optimises the bias/variance tradeoff. In this approach the size of the model is limited only by computational considerations. The application of Bayesian learning to neural networks has been pioneered by MacKay (1992), who uses a Gaussian approximation to the posterior weight distribution.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found