Learning Classification with Unlabeled Data

Sa, Virginia R. de

Neural Information Processing Systems 

Department of Computer Science University of Rochester Rochester, NY 14627 Abstract One of the advantages of supervised learning is that the final error metric isavailable during training. For classifiers, the algorithm can directly reduce the number of misclassifications on the training set. Unfortunately, whenmodeling human learning or constructing classifiers for autonomous robots,supervisory labels are often not available or too expensive. In this paper we show that we can substitute for the labels by making use of structure between the pattern distributions to different sensory modalities.We show that minimizing the disagreement between the outputs of networks processing patterns from these different modalities is a sensible approximation to minimizing the number of misclassifications in each modality, and leads to similar results. Using the Peterson-Barney vowel dataset we show that the algorithm performs well in finding appropriate placementfor the codebook vectors particularly when the confuseable classes are different for the two modalities. 1 INTRODUCTION This paper addresses the question of how a human or autonomous robot can learn to classify new objects without experience with previous labeled examples.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found