Threshold Network Learning in the Presence of Equivalences

Shawe-Taylor, John

Neural Information Processing Systems 

This paper applies the theory of Probably Approximately Correct (PAC) learning to multiple output feedforward threshold networks in which the weights conform to certain equivalences. It is shown that the sample size for reliable learning can be bounded above by a formula similar to that required for single output networks with no equivalences. The best previously obtainedbounds are improved for all cases.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found