Bayesian PCA

Bishop, Christopher M.

Neural Information Processing Systems 

The technique of principal component analysis (PCA) has recently been expressed as the maximum likelihood solution for a generative latent variable model. In this paper we use this probabilistic reformulation as the basis for a Bayesian treatment of PCA. Our key result is that effective dimensionalityof the latent space (equivalent to the number of retained principal components) can be determined automatically as part of the Bayesian inference procedure. An important application of this framework is to mixtures of probabilistic PCA models, in which each component can determine its own effective complexity. 1 Introduction Principal component analysis (PCA) is a widely used technique for data analysis. Recently Tipping and Bishop (1997b) showed that a specific form of generative latent variable model has the property that its maximum likelihood solution extracts the principal subspace of the observed data set.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found