The Efficiency and the Robustness of Natural Gradient Descent Learning Rule

Yang, Howard Hua, Amari, Shun-ichi

Neural Information Processing Systems 

The inverse of the Fisher information matrix is used in the natural gradientdescent algorithm to train single-layer and multi-layer perceptrons. We have discovered a new scheme to represent the Fisher information matrix of a stochastic multi-layer perceptron. Based on this scheme, we have designed an algorithm to compute the natural gradient. When the input dimension n is much larger than the number of hidden neurons, the complexity of this algorithm isof order O(n). It is confirmed by simulations that the natural gradient descent learning rule is not only efficient but also robust. 1 INTRODUCTION The inverse of the Fisher information matrix is required to find the Cramer-Rae lower bound to analyze the performance of an unbiased estimator. It is also needed in the natural gradient learning framework (Amari, 1997) to design statistically efficient algorithms for estimating parameters in general and for training neural networks in particular. In this paper, we assume a stochastic model for multilayer perceptrons.Considering a Riemannian parameter space in which the Fisher information matrix is a metric tensor, we apply the natural gradient learning rule to train single-layer and multi-layer perceptrons. The main difficulty encountered is to compute the inverse of the Fisher information matrix of large dimensions when the input dimension is high. By exploring the structure of the Fisher information matrix and its inverse, we design a fast algorithm with lower complexity to implement the natural gradient learning algorithm.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found