On Neural Networks with Minimal Weights
Bohossian, Vasken, Bruck, Jehoshua
–Neural Information Processing Systems
A linear threshold element computes a function that is a sign of a weighted sum of the input variables. The weights are arbitrary integers; actually, they can be very big integers-exponential in the number of the input variables. However, in practice, it is difficult to implement big weights. In the present literature a distinction is made between the two extreme cases: linear threshold functions with polynomial-size weights as opposed to those with exponential-size weights. The main contribution of this paper is to fill up the gap by further refining that separation.
Neural Information Processing Systems
Dec-31-1996