Computational Efficiency: A Common Organizing Principle for Parallel Computer Maps and Brain Maps?

Nelson, Mark E., Bower, James M.

Neural Information Processing Systems 

It is well-known that neural responses in particular brain regions are spatially organized, but no general principles have been developed thatrelate the structure of a brain map to the nature of the associated computation. On parallel computers, maps of a sort quite similar to brain maps arise when a computation is distributed across multiple processors. In this paper we will discuss the relationship betweenmaps and computations on these computers and suggest how similar considerations might also apply to maps in the brain. 1 INTRODUCTION A great deal of effort in experimental and theoretical neuroscience is devoted to recording and interpreting spatial patterns of neural activity. A variety of map patterns have been observed in different brain regions and, presumably, these patterns reflectsomething about the nature of the neural computations being carried out in these regions. To date, however, there have been no general principles for interpreting the structure of a brain map in terms of properties of the associated computation. In the field of parallel computing, analogous maps arise when a computation isdistributed across multiple processors and, in this case, the relationship Computational Eftkiency 61 between maps and computations is better understood. In this paper, we will attempt torelate some of the mapping principles from the field of parallel computing to the organization of brain maps.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found