Sparse Kernel Orthonormalized PLS for feature extraction in large data sets

Arenas-garcía, Jerónimo, Petersen, Kaare B., Hansen, Lars K.

Neural Information Processing Systems 

In this paper we are presenting a novel multivariate analysis method. Our scheme is based on a novel kernel orthonormalized partial least squares (PLS) variant for feature extraction, imposing sparsity constrains in the solution to improve scalability. Thealgorithm is tested on a benchmark of UCI data sets, and on the analysis of integrated short-time music features for genre prediction. The upshot is that the method has strong expressive power even with rather few features, is clearly outperforming the ordinary kernel PLS, and therefore is an appealing method for feature extraction of labelled data.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found