Heterogeneous Bitwidth Binarization in Convolutional Neural Networks
Fromm, Joshua, Patel, Shwetak, Philipose, Matthai
–Neural Information Processing Systems
Recent work has shown that fast, compact low-bitwidth neural networks can be surprisingly accurate. These networks use homogeneous binarization: all parameters in each layer or (more commonly) the whole model have the same low bitwidth (e.g., 2 bits). However, modern hardware allows efficient designs where each arithmetic instruction can have a custom bitwidth, motivating heterogeneous binarization, where every parameter in the network may have a different bitwidth. In this paper, we show that it is feasible and useful to select bitwidths at the parameter granularity during training. For instance a heterogeneously quantized version of modern networks such as AlexNet and MobileNet, with the right mix of 1-, 2- and 3-bit parameters that average to just 1.4 bits can equal the accuracy of homogeneous 2-bit versions of these networks. Further, we provide analyses to show that the heterogeneously binarized systems yield FPGA- and ASIC-based implementations that are correspondingly more efficient in both circuit area and energy efficiency than their homogeneous counterparts.
Neural Information Processing Systems
Dec-31-2018
- Country:
- North America > United States > Washington > King County > Seattle (0.14)
- Genre:
- Research Report > New Finding (0.46)
- Technology: