Analysis of Distributed Representation of Constituent Structure in Connectionist Systems
–Neural Information Processing Systems
The method allows the fully distributed representation of symbolic structures: the roles in the structures, as well as the fillers for those roles, can be arbitrarily non-local. Fully and partially localized special cases reduce to existing cases of connectionist representations of structured data; the tensor product representation generalizes these and the few existing examples of fuUy distributed representations of structures. The representation saturates gracefully as larger structures are represented; it pennits recursive construction of complex representations from simpler ones; it respects the independence of the capacities to generate and maintain multiple bindings in parallel; it extends naturally to continuous structures and continuous representational patterns; it pennits values to also serve as variables; it enables analysis of the interference of symbolic structures stored in associative memories; and it leads to characterization of optimal distributed representations of roles and a recirculation algorithm for learning them. Introduction Any model of complex infonnation processing in networks of simple processors must solve the problem of representing complex structures over network elements. Connectionist models of realistic natural language processing, for example, must employ computationally adequate representations of complex sentences. Many connectionists feel that to develop connectionist systems with the computational power required by complex tasks, distributed representations must be used: an individual processing unit must participate in the representation of multiple items, and each item must be represented as a pattern of activity of multiple processors. Connectionist models have used more or less distributed representations of more or less complex structures, but little if any general analysis of the problem of distributed representation of complex infonnation has been carried out This paper reports results of an analysis of a general method called the tensor product representation.
Neural Information Processing Systems
Dec-31-1988
- Country:
- North America > United States > Colorado > Boulder County > Boulder (0.14)
- Genre:
- Research Report (1.00)
- Technology: