Machine learning for financial prediction: experimentation with David Aronson's latest work – part 2
My first post on using machine learning for financial prediction took an in-depth look at various feature selection methods as a data pre-processing step in the quest to mine financial data for profitable patterns. I looked at various methods to identify predictive features including Maximal Information Coefficient (MIC), Recursive Feature Elimination (RFE), algorithms with built-in feature selection, selection via exhaustive search of possible generalized linear models, and the Boruta feature selection algorithm. I personally found the Boruta algorithm to be the most intuitive and elegant approach, but regardless of the method chosen, the same features seemed to keep on turning up in the results. In this post, I will take this analysis further and use these features to build predictive models that could form the basis of autonomous trading systems. Firstly, I'll provide an overview of the algorithms that I have found to generally perform well on this type of machine learning problem as well as those algorithms recommended by David Aronson (2013) in Statistically Sound Machine Learning for Algorithmic Trading of Financial Instruments (SSML). I'll also discuss a framework for measuring the performance of various models to facilitate robust comparison and model selection.
May-10-2016, 21:40:32 GMT