Machine Learning‐Driven Bioelectronics for Closed‐Loop Control of Cells
From the simplest unicellular organisms to complex animals, feedback control based on sensing and actuation is a staple of self‐regulation in biological processes and is a key to life itself. Malfunctioning of this control loop can often lead to disease or death. Bioelectronic devices that interface electronics with biological systems can be used for sensing and actuation of biological processes and have potential for novel therapeutic applications. Due to the complexity of biological systems and the challenge of affecting their innate self‐regulation, closing the loop between sensing and actuation with bioelectronics is difficult to achieve. Herein, bioelectronic proton‐conducting devices are integrated with fluorescence sensing using machine learning to provide closed‐loop control of bioelectronic actuation in living cells.
Oct-14-2020, 15:31:02 GMT
- Technology: