Using Automation in AI with Recent Enterprise Tools


Data Science (DS) and Machine Learning (ML) are the spines of today's data-driven business decision-making. From a human viewpoint, ML often consists of multiple phases: from gathering requirements and datasets to deploying a model, and to support human decision-making--we refer to these stages together as DS/ML Lifecycle. There are also various personas in the DS/ML team and these personas must coordinate across the lifecycle: stakeholders set requirements, data scientists define a plan, and data engineers and ML engineers support with data cleaning and model building. Later, stakeholders verify the model, and domain experts use model inferences in decision making, and so on. Throughout the lifecycle, refinements may be performed at various stages, as needed. It is such a complex and time-consuming activity that there are not enough DS/ML professionals to fill the job demands, and as much as 80% of their time is spent on low-level activities such as tweaking data or trying out various algorithmic options and model tuning. These two challenges -- the dearth of data scientists, and time-consuming low-level activities -- have stimulated AI researchers and system builders to explore an automated solution for DS/ML work: Automated Data Science (AutoML). Several AutoML algorithms and systems have been built to automate the various stages of the DS/ML lifecycle. For example, the ETL (extract/transform/load) task has been applied to the data readiness, pre-processing & cleaning stage, and has attracted research attention.