Scientists use reinforcement learning to train quantum algorithm

#artificialintelligence 

Recent advancements in quantum computing have driven the scientific community's quest to solve a certain class of complex problems for which quantum computers would be better suited than traditional supercomputers. To improve the efficiency with which quantum computers can solve these problems, scientists are investigating the use of artificial intelligence approaches. In a new study, scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have developed a new algorithm based on reinforcement learning to find the optimal parameters for the Quantum Approximate Optimization Algorithm (QAOA), which allows a quantum computer to solve certain combinatorial problems such as those that arise in materials design, chemistry and wireless communications. "It's a bit like having a self-driving car in traffic; the algorithm can detect when it needs to make adjustments in the'dials' it uses to do the computation." "Combinatorial optimization problems are those for which the solution space gets exponentially larger as you expand the number of decision variables," said Argonne computer scientist Prasanna Balaprakash.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found