Time Series Analysis in Python: An Introduction – Towards Data Science
Time series are one of the most common data types encountered in daily life. Financial prices, weather, home energy usage, and even weight are all examples of data that can be collected at regular intervals. Almost every data scientist will encounter time series in their daily work and learning how to model them is an important skill in the data science toolbox. One powerful yet simple method for analyzing and predicting periodic data is the additive model. The idea is straightforward: represent a time-series as a combination of patterns at different scales such as daily, weekly, seasonally, and yearly, along with an overall trend.
Jan-15-2018, 07:00:57 GMT