How statistics can aid in fight against misinformation


An American University math professor and his team created a statistical model that can be used to detect misinformation in social posts. The model also avoids the problem of black boxes that occur in machine learning. With the use of algorithms and computer models, machine learning is increasingly playing a role in helping to stop the spread of misinformation, but a main challenge for scientists is the black box of unknowability, where researchers don't understand how the machine arrives at the same decision as human trainers. Using a Twitter dataset with misinformation tweets about COVID-19, Zois Boukouvalas, assistant professor in AU's Department of Mathematics and Statistics, College of Arts and Sciences, shows how statistical models can detect misinformation in social media during events like a pandemic or a natural disaster. In newly published research, Boukouvalas and his colleagues, including AU student Caitlin Moroney and Computer Science Prof. Nathalie Japkowicz, also show how the model's decisions align with those made by humans.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found