How to evaluate a machine learning model - part 4- Edvancer Eduventures


This blog post is the continuation of my previous articles part 1, part 2 and part 3. Caution: The Difference Between Training Metrics and Evaluation Metrics Sometimes, the model training procedure uses a different metric (also known as a loss function) than the evaluation. This can happen in the instance when we are re-appropriating a model for a different task than it was designed for. For example, we might train a personalized recommender by minimizing the loss between its predictions and observed ratings, and then use this recommender to produce a ranked list of recommendations. This is not an optimal scenario. It makes the life of the model difficult by asking it to do a task that it was not trained to do.