Why So Many Data Science Projects Fail to Deliver


This article is based on an in-depth study of the data science efforts in three large, private-sector Indian banks with collective assets exceeding $200 million. The study included onsite observations; semistructured interviews with 57 executives, managers, and data scientists; and the examination of archival records. The five obstacles and the solutions for overcoming them emerged from an inductive analytical process based on the qualitative data. More and more companies are embracing data science as a function and a capability. But many of them have not been able to consistently derive business value from their investments in big data, artificial intelligence, and machine learning.1 Moreover, evidence suggests that the gap is widening between organizations successfully gaining value from data science and those struggling to do so.2

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found