Multirobot Coordination for Space Exploration

Yliniemi, Logan (Oregon State University) | Agogino, Adrian K. (Oregon State University) | Tumer, Kagan

AI Magazine 

Teams of artificially intelligent planetary rovers have tremendous potential for space exploration, allowing for reduced cost, increased flexibility and increased reliability. However, having these multiple autonomous devices acting simultaneously leads to a problem of coordination: to achieve the best results, the they should work together. Due to the large distances and harsh environments, a rover must be able to perform a wide variety of tasks with a wide variety of potential teammates in uncertain and unsafe environments. Instead, this article examines tackling this problem through the use of coordinated reinforcement learning: rather than being programmed what to do, the rovers iteratively learn through trial and error to take take actions that lead to high overall system return.