A Fast Stochastic Error-Descent Algorithm for Supervised Learning and Optimization
–Neural Information Processing Systems
A parallel stochastic algorithm is investigated for error-descent learning and optimization in deterministic networks of arbitrary topology. No explicit information about internal network structure is needed. The method is based on the model-free distributed learning mechanism of Dembo and Kailath. A modified parameter update rule is proposed by which each individual parameter vector perturbation contributes a decrease in error. A substantially faster learning speed is hence allowed. Furthermore, the modified algorithm supports learning time-varying features in dynamical networks. We analyze the convergence and scaling properties of the algorithm, and present simulation results for dynamic trajectory learning in recurrent networks.
Neural Information Processing Systems
Dec-31-1993