Optimal Movement Primitives

Sanger, Terence D.

Neural Information Processing Systems 

The theory of Optimal Unsupervised Motor Learning shows how a network can discover a reduced-order controller for an unknown nonlinear system by representing only the most significant modes. Here, I extend the theory to apply to command sequences, so that the most significant components discovered by the network correspond to motion "primitives". Combinations of these primitives can be used to produce a wide variety of different movements. I demonstrate applications to human handwriting decomposition and synthesis, as well as to the analysis of electrophysiological experiments on movements resulting from stimulation of the frog spinal cord. 1 INTRODUCTION There is much debate within the neuroscience community concerning the internal representation of movement, and current neurophysiological investigations are aimed at uncovering these representations. In this paper, I propose a different approach that attempts to define the optimal internal representation in terms of "movement primitives", and I compare this representation with the observed behavior. In this way, we can make strong predictions about internal signal processing.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found