Geometrical Singularities in the Neuromanifold of Multilayer Perceptrons
Amari, Shun-ichi, Park, Hyeyoung, Ozeki, Tomoko
–Neural Information Processing Systems
Singularities are ubiquitous in the parameter space of hierarchical models such as multilayer perceptrons. At singularities, the Fisher information matrix degenerates, and the Cramer-Rao paradigm does no more hold, implying that the classical model selection theory such as AIC and MDL cannot be applied. It is important to study the relation between the generalization error and the training error at singularities. The present paper demonstrates a method of analyzing these errors both for the maximum likelihood estimator and the Bayesian predictive distribution in terms of Gaussian random fields, by using simple models. 1 Introduction A neural network is specified by a number of parameters which are synaptic weights and biases. Learning takes place by modifying these parameters from observed input-output examples.
Neural Information Processing Systems
Dec-31-2002
- Technology: