Anticipatory On-Line Planning

Burns, Ethan (University of New Hampshire) | Benton, J. (Graduate Student, Arizona State University) | Ruml, Wheeler (University of New Hampshire) | Yoon, Sungwook (Palo Alto Research Center) | Do, Minh B. (NASA Ames Research Center)

AAAI Conferences 

It assumes that the Consider the problem faced by a unmanned aerial vehicle probability distribution over incoming goals is either known (UAV) dispatcher who must plan for a set of UAVs to service or learn-able and employs the technique of optimization a set of observation requests. To service a request, one of the in hindsight, previously developed for online scheduling UAVs must fly over a given strip of land with its observation and recently investigated for planning with stochastic actions equipment turned on. The dispatcher wants to minimize the (Mercier and van Hentenryck 2007; Yoon et al. 2008; time between when a request arrives and when an UAV has 2010). This technique first samples from the distribution of completed the flyover. Even when the actions of the UAV, possible future goal arrivals and then considers which next such as flying particular routes or switching on/off observational action optimizes the expected cost when averaged over the equipment, can be regarded as deterministic, the sampled futures. By using this anticipatory technique, our stochastic arrival of new requests can make for a challenging planner is able to take future goals into account.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found