Group-Based Active Learning of Classification Models

Luo, Zhipeng (University of Pittsburgh) | Hauskrecht, Milos (University of Pittsburgh)

AAAI Conferences 

Learning of classification models from real-world data often requires additional human expert effort to annotate the data. However, this process can be rather costly and finding ways of reducing the human annotation effort is critical for this task. The objective of this paper is to develop and study new ways of providing human feedback for efficient learning of classification models by labeling groups of examples. Briefly, unlike traditional active learning methods that seek feedback on individual examples, we develop a new group-based active learning framework that solicits label information on groups of multiple examples. In order to describe groups in a user-friendly way, conjunctive patterns are used to compactly represent groups. Our empirical study on 12 UCI data sets demonstrates the advantages and superiority of our approach over both classic instance-based active learning work, as well as existing group-based active-learning methods.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found