EM-DD: An Improved Multiple-Instance Learning Technique
–Neural Information Processing Systems
In this model, each training example is a set (or bag) of instances along with a single label equal to the maximum label among all instances in the bag. The individual instances within the bag are not given labels. The goal is to learn to accurately predict the label of previously unseen bags. Standard supervised learning can be viewed as a special case of MI learning where each bag holds a single instance. The MI learning model was originally motivated by the drug activity prediction problem where each instance is a possible conformation (or shape) of a molecule and each bag contains all likely low-energy conformations for the molecule.
Neural Information Processing Systems
Dec-31-2002