Learning Nonlinear Dynamical Systems Using an EM Algorithm
Ghahramani, Zoubin, Roweis, Sam T.
–Neural Information Processing Systems
The Expectation-Maximization (EM) algorithm is an iterative procedure for maximum likelihood parameter estimation from data sets with missing or hidden variables [2]. It has been applied to system identification in linear stochastic state-space models, where the state variables are hidden from the observer and both the state and the parameters of the model have to be estimated simultaneously [9]. We present a generalization of the EM algorithm for parameter estimation in nonlinear dynamical systems. The "expectation" step makes use of Extended Kalman Smoothing to estimate the state, while the "maximization" step re-estimates the parameters using these uncertain state estimates. In general, the nonlinear maximization step is difficult because it requires integrating out the uncertainty in the states.
Neural Information Processing Systems
Dec-31-1999