Learning Nonlinear Dynamical Systems Using an EM Algorithm

Ghahramani, Zoubin, Roweis, Sam T.

Neural Information Processing Systems 

The Expectation-Maximization (EM) algorithm is an iterative procedure for maximum likelihood parameter estimation from data sets with missing or hidden variables [2]. It has been applied to system identification in linear stochastic state-space models, where the state variables are hidden from the observer and both the state and the parameters of the model have to be estimated simultaneously [9]. We present a generalization of the EM algorithm for parameter estimation in nonlinear dynamical systems. The "expectation" step makes use of Extended Kalman Smoothing to estimate the state, while the "maximization" step re-estimates the parameters using these uncertain state estimates. In general, the nonlinear maximization step is difficult because it requires integrating out the uncertainty in the states.