Support Vector Machines for Multiple-Instance Learning

Andrews, Stuart, Tsochantaridis, Ioannis, Hofmann, Thomas

Neural Information Processing Systems 

This paper presents two new formulations of multiple-instance learning as a maximum margin problem. The proposed extensions of the Support Vector Machine (SVM) learning approach lead to mixed integer quadratic programs that can be solved heuristically. Our generalization of SVMs makes a state-of-the-art classification technique, including nonlinear classification via kernels, available to an area that up to now has been largely dominated by special purpose methods. We present experimental results on a pharmaceutical data set and on applications in automated image indexing and document categorization.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found