Connecting Joint-Embedding Predictive Architecture with Contrastive Self-supervised Learning

Neural Information Processing Systems 

In recent advancements in unsupervised visual representation learning, the Joint-Embedding Predictive Architecture (JEPA) has emerged as a significant method for extracting visual features from unlabeled imagery through an innovative masking strategy. Despite its success, two primary limitations have been identified: the inefficacy of Exponential Moving Average (EMA) from I-JEPA in preventing entire collapse and the inadequacy of I-JEPA prediction in accurately learning the mean of patch representations.