Teacher Student

Neural Information Processing Systems 

A hallmark property of explainable AI models is the ability to teach other agents, communicating knowledge of how to perform a task. While Large Language Models (LLMs) perform complex reasoning by generating explanations for their predictions, it is unclear whether they also make good teachers for weaker agents. To address this, we consider a student-teacher framework between two LLM agents and study if, when, and how the teacher should intervene with natural language explanations to improve the student's performance. Since communication is expensive, we define a budget such that the teacher only communicates explanations for a fraction of the data, after which the student should perform well on its own. We decompose the teaching problem along four axes: (1) if teacher's test time intervention improve student predictions, (2) when it is worth explaining a data point, (3) how the teacher should personalize explanations to better teach the student, and (4) if teacher explanations also improve student performance on future unexplained data.