A Variational Principle for Model-based Morphing
Saul, Lawrence K., Jordan, Michael I.
–Neural Information Processing Systems
Given a multidimensional data set and a model of its density, we consider how to define the optimal interpolation between two points. This is done by assigning a cost to each path through space, based on two competing goals-one to interpolate through regions of high density, the other to minimize arc length. From this path functional, we derive the Euler-Lagrange equations for extremal motionj given two points, the desired interpolation is found by solving a boundary value problem. We show that this interpolation can be done efficiently, in high dimensions, for Gaussian, Dirichlet, and mixture models. 1 Introduction The problem of nonlinear interpolation arises frequently in image, speech, and signal processing. Consider the following two examples: (i) given two profiles of the same face, connect them by a smooth animation of intermediate poses[l]j (ii) given a telephone signal masked by intermittent noise, fill in the missing speech.
Neural Information Processing Systems
Dec-31-1997