Consonant Recognition by Modular Construction of Large Phonemic Time-Delay Neural Networks
–Neural Information Processing Systems
Encouraged by these results we wanted to explore the question, how we might expand on these models to make them useful for the design of speech recognition systems. A problem that emerges as we attempt to apply neural network models to the full speech recognition problem is the problem of scaling. Simply extending neural networks to ever larger structures and retraining them as one monolithic net quickly exceeds the capabilities of the fastest and largest supercomputers. The search complexity of finding a good solutions in a huge space of possible network configurations also soon assumes unmanageable proportions. Moreover, having to decide on all possible classes for recognition ahead of time as well as collecting sufficient data to train such a large monolithic network is impractical to say the least. In an effort to extend our models from small recognition tasks to large scale speech recognition systems, we must therefore explore modularity and incremental learning as design strategies to break up a large learning task into smaller subtasks. Breaking up a large task into subtasks to be tackled by individual black boxes interconnected in ad hoc arrangements, on the other hand, would mean to abandon one of the most attractive aspects of connectionism: the ability to perform complex constraint satisfaction in a massively parallel and interconnected fashion, in view of an overall optimal perfonnance goal.
Neural Information Processing Systems
Dec-31-1989
- Genre:
- Research Report > New Finding (0.46)