Coupled Dynamics of Fast Neurons and Slow Interactions
Coolen, A.C.C., Penney, R. W., Sherrington, D.
–Neural Information Processing Systems
A simple model of coupled dynamics of fast neurons and slow interactions, modelling self-organization in recurrent neural networks, leads naturally to an effective statistical mechanics characterized by a partition function which is an average over a replicated system. This is reminiscent of the replica trick used to study spin-glasses, but with the difference that the number of replicas has a physical meaning as the ratio of two temperatures and can be varied throughout the whole range of real values. The model has interesting phase consequences as a function of varying this ratio and external stimuli, and can be extended to a range of other models. As the basic archetypal model we consider a system of Ising spin neurons (J'i E {-I, I}, i E {I,..., N}, interacting via continuous-valued symmetric interactions, Iij, which themselves evolve in response to the states of the neurons. JijO"iO"j (2) i j and the subscript {Jij} indicates that the {Jij} are to be considered as quenched variables.
Neural Information Processing Systems
Dec-31-1994