Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction
Kristofer Bouchard, Alejandro Bujan, Fred Roosta, Shashanka Ubaru, Mr. Prabhat, Antoine Snijders, Jian-Hua Mao, Edward Chang, Michael W. Mahoney, Sharmodeep Bhattacharya
–Neural Information Processing Systems
The increasing size and complexity of scientific data could dramatically enhance discovery and prediction for basic scientific applications. Realizing this potential, however, requires novel statistical analysis methods that are both interpretable and predictive. We introduce Union of Intersections (UoI), a flexible, modular, and scalable framework for enhanced model selection and estimation. Methods based on UoI perform model selection and model estimation through intersection and union operations, respectively. We show that UoI-based methods achieve low-variance and nearly unbiased estimation of a small number of interpretable features, while maintaining high-quality prediction accuracy.
Neural Information Processing Systems
Oct-9-2024, 03:04:31 GMT
- Genre:
- Research Report (0.68)