Spiking and saturating dendrites differentially expand single neuron computation capacity
–Neural Information Processing Systems
The integration of excitatory inputs in dendrites is non-linear: multiple excitatory inputs can produce a local depolarization departing from the arithmetic sum of each input's response taken separately. If this depolarization is bigger than the arithmetic sum, the dendrite is spiking; if the depolarization is smaller, the dendrite is saturating. Decomposing a dendritic tree into independent dendritic spiking units greatly extends its computational capacity, as the neuron then maps onto a two layer neural network, enabling it to compute linearly non-separable Boolean functions (lnBFs). How can these lnBFs be implemented by dendritic architectures in practise? And can saturating dendrites equally expand computational capacity?
Neural Information Processing Systems
Mar-14-2024, 08:59:08 GMT