Automatic Discovery of Cognitive Skills to Improve the Prediction of Student Learning

Neural Information Processing Systems 

To master a discipline such as algebra or physics, students must acquire a set of cognitive skills. Traditionally, educators and domain experts use intuition to determine what these skills are and then select practice exercises to hone a particular skill. We propose a technique that uses student performance data to automatically discover the skills needed in a discipline. The technique assigns a latent skill to each exercise such that a student's expected accuracy on a sequence of same-skill exercises improves monotonically with practice. Rather than discarding the skills identified by experts, our technique incorporates a nonparametric prior over the exerciseskill assignments that is based on the expert-provided skills and a weighted Chinese restaurant process.