Adaptive knot Placement for Nonparametric Regression
Najafi, Hossein L., Cherkassky, Vladimir
–Neural Information Processing Systems
We show how an "Elman" network architecture, constructed from recurrently connected oscillatory associative memory network modules, can employ selective "attentional" control of synchronization to direct the flow of communication and computation within the architecture to solve a grammatical inference problem. Previously we have shown how the discrete time "Elman" network algorithm can be implemented in a network completely described by continuous ordinary differential equations. The time steps (machine cycles) of the system are implemented by rhythmic variation (clocking) of a bifurcation parameter. In this architecture, oscillation amplitude codes the information content or activity of a module (unit), whereas phase and frequency are used to "softwire" the network. Only synchronized modules communicate by exchanging amplitude information; the activity of non-resonating modules contributes incoherent crosstalk noise. Attentional control is modeled as a special subset of the hidden modules with ouputs which affect the resonant frequencies of other hidden modules. They control synchrony among the other modules and direct the flow of computation (attention) to effect transitions between two subgraphs of a thirteen state automaton which the system emulates to generate a Reber grammar. The internal crosstalk noise is used to drive the required random transitions of the automaton.
Neural Information Processing Systems
Dec-31-1994
- Genre:
- Research Report (0.47)