Operational Fault Tolerance of CMAC Networks

Carter, Michael J., Rudolph, Franklin J., Nucci, Adam J.

Neural Information Processing Systems 

The performance sensitivity of Albus' CMAC network was studied for the scenario in which faults are introduced into the adjustable weights after training has been accomplished. It was found that fault sensitivity was reduced with increased generalization when "loss of weight" faults were considered, but sensitivity was increased for "saturated weight" faults. 1 INTRODUCTION Fault-tolerance is often cited as an inherent property of neural networks, and is thought by many to be a natural consequence of "massively parallel" computational architectures. Numerous anecdotal reports of fault-tolerance experiments, primarily in pattern classification tasks, abound in the literature. However, there has been surprisingly little rigorous investigation of the fault-tolerance properties of various network architectures in other application areas. In this paper we investigate the fault-tolerance of the CMAC (Cerebellar Model Arithmetic Computer) network [Albus 1975] in a systematic manner. CMAC networks have attracted much recent attention because of their successful application in robotic manipulator control [Ersu 1984, Miller 1986, Lane 1988].

Similar Docs  Excel Report  more

TitleSimilaritySource
None found