Automatic Integration for Spatiotemporal Neural Point Processes

Neural Information Processing Systems 

Learning continuous-time point processes is essential to many discrete event forecasting tasks. However, integration poses a major challenge, particularly for spatiotemporal point processes (STPPs), as it involves calculating the likelihood through triple integrals over space and time. Existing methods for integrating STPP either assume a parametric form of the intensity function, which lacks flexibility; or approximating the intensity with Monte Carlo sampling, which introduces numerical errors. Recent work by Omi et al. [2019] proposes a dual network approach for efficient integration of flexible intensity function. However, their method only focuses on the 1D temporal point process.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found