Nonbacktracking Bounds on the Influence in Independent Cascade Models
Emmanuel Abbe, Sanjeev Kulkarni, Eun Jee Lee
–Neural Information Processing Systems
This paper develops upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds exploit nonbacktracking walks, Fortuin-Kasteleyn-Ginibre type inequalities, and are computed by message passing algorithms. Nonbacktracking walks have recently allowed for headways in community detection, and this paper shows that their use can also impact the influence computation. Further, we provide parameterized versions of the bounds that control the trade-off between the efficiency and the accuracy. Finally, the tightness of the bounds is illustrated with simulations on various network models.
Neural Information Processing Systems
Oct-6-2024, 22:53:11 GMT
- Country:
- North America > United States (0.28)
- Technology:
- Information Technology
- Artificial Intelligence (0.94)
- Communications > Networks (0.88)
- Information Technology