Learning Spatially-Aware Language and Audio Embeddings
–Neural Information Processing Systems
Humans can picture a sound scene given an imprecise natural language description. For example, it is easy to imagine an acoustic environment given a phrase like "the lion roar came from right behind me!". For a machine to have the same degree of comprehension, the machine must know what a lion is (semantic attribute), what the concept of "behind" is (spatial attribute) and how these pieces of linguistic information align with the semantic and spatial attributes of the sound (what a roar sounds like when its coming from behind). State-of-the-art audio foundation models, such as CLAP [7, 44], which learn to map between audio scenes and natural textual descriptions, are trained on non-spatial audio and text pairs, and hence lack spatial awareness. In contrast, sound event localization and detection models are limited to recognizing sounds from a fixed number of classes, and they localize the source to absolute position (e.g., 0.2m) rather than a position described using natural language (e.g., "next to me").
Neural Information Processing Systems
May-29-2025, 04:48:33 GMT
- Genre:
- Research Report > Experimental Study (1.00)
- Industry:
- Leisure & Entertainment (1.00)
- Media (0.67)
- Technology: