Analytical Results for the Error in Filtering of Gaussian Processes

Neural Information Processing Systems 

Bayesian filtering of stochastic stimuli has received a great deal of attention recently. It has been applied to describe the way in which biological systems dynamically represent and make decisions about the environment. There have been no exact results for the error in the biologically plausible setting of inference on point process, however. We present an exact analysis of the evolution of the meansquared error in a state estimation task using Gaussian-tuned point processes as sensors. This allows us to study the dynamics of the error of an optimal Bayesian decoder, providing insights into the limits obtainable in this task. This is done for Markovian and a class of non-Markovian Gaussian processes. We find that there is an optimal tuning width for which the error is minimized. This leads to a characterization of the optimal encoding for the setting as a function of the statistics of the stimulus, providing a mathematically sound primer for an ecological theory of sensory processing.