Active Support Vector Machine Classification

Mangasarian, Olvi L., Musicant, David R.

Neural Information Processing Systems 

Classification is achieved by a linear or nonlinear separating surface in the input space of the dataset. In this work we propose a very fast simple algorithm, based on an active set strategy for solving quadratic programs with bounds [18]. The algorithm is capable of accurately solving problems with millions of points and requires nothing more complicated than a commonly available linear equation solver [17, 1, 6] for a typically small (100) dimensional input space of the problem. Key to our approach are the following two changes to the standard linear SVM: 1. Maximize the margin (distance) between the parallel separating planes with respect to both orientation (w) as well as location relative to the origin b).

Similar Docs  Excel Report  more

TitleSimilaritySource
None found