MAViL: Masked Audio-Video Learners Po-Yao Huang 1 Chaitanya Ryali

Neural Information Processing Systems 

We present Masked Audio-Video Learners (MAViL) to learn audio-visual representations with three complementary forms of self-supervision: (1) reconstructing masked raw audio and video inputs, (2) intra-modal and inter-modal contrastive learning with masking, and (3) self-training to predict aligned and contextualized audio-video representations learned from the first two objectives. Empirically, MAViL achieves state-of-the-art audio-video classification performance on AudioSet (53.3 mAP) and VGGSound (67.1% accuracy), surpassing recent self-supervised models and supervised models that utilize external labeled data. Notably, pre-training with MAViL not only enhances performance in multimodal classification and retrieval tasks, but it also improves the representations of each modality in isolation, without relying on information from the other modality during uni-modal fine-tuning or inference.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found